
Eur. Phys. J. B 23, 229–234 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Localization properties of two interacting particles
in a quasi-periodic potential with a metal-insulator transition
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Abstract. We study the influence of many-particle interactions on a metal-insulator transition. We consider
the two-interacting-particle problem for onsite interacting particles on a one-dimensional quasiperiodic
chain, the so-called Aubry-André model. We show numerically by the decimation method and finite-size
scaling that the interaction does not modify the critical parameters such as the transition point and the
localization-length exponent. We compare our results to the case of finite density systems studied by means
of the density-matrix renormalization scheme.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.27.+a Strongly correlated
electron systems; heavy fermions

1 Introduction

The metal-insulator transition (MIT) in disordered elec-
tronic systems has been the subject of intense research
activities over the last two decades and still continues to
attract much attention. For free electrons in disordered
systems [1] the scaling hypothesis of localization [2] can
successfully predict many of the universal features of the
MIT. However, the influence of many-particle interactions
on the MIT is not equally well understood [3] and re-
cent investigations of an apparent MIT in two-dimensional
(2D) systems even question the main assumptions of the
scaling hypothesis [4–9]. A simple theoretical approach
to the interplay of interactions and disorder is based on
the two-interacting-particles (TIP) problem in 1D random
[10–12] or quasiperiodic potentials [13,14]. Furthermore,
numerical results for spinless fermions at finite particle
density have given additional insight [15–17]. In general,
these investigations have shown that changes in the wave
function interferences due to many-particle interactions
[18,19] can lead to a rather large enhancement of the lo-
calization lengths in 1D and 2D [16,20,21].

The standard approach for computing localization len-
gths in disordered, non-interacting systems is the transfer-
matrix method [22]. It has been used for investigations
of the enhancement of the TIP localization length in a
1D random potential [12,23] where there is no MIT as
all wave functions are always localized. Other numerical
approaches to the TIP problem have been based on the
time evolution of wave packets [10,24], exact diagonaliza-
tion [25] or Green function approaches [20,26,27].
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In the single-particle case, the 1D quasiperiodic Aubry-
André model is known rigorously to exhibit an MIT for all
states in the spectrum as a function of the quasiperiodic
potential strength µ [28]. The ground state wave func-
tion is extended for µ < 1 and localized for µ > 1. The
system at µc = 1 is critical: there the wave functions
decrease algebraically, not exponentially as in the local-
ized case. Recently, we examined this model for TIP by
means of the transfer-matrix method together with a care-
ful finite-size-scaling analysis [14] following earlier analyt-
ical work of references [29,30]. We showed that the model
for TIP exhibits an MIT as a function of µ at µc = 1 as
in the single-particle case. Our finite-size-scaling results
for onsite (Hubbard) interaction suggest that the criti-
cal behavior, i.e., the value for the critical exponent ν of
the correlation length, is also not affected by the inter-
action [14]. However, it has been demonstrated [12,20]
that a transfer-matrix-method approach applied to the
TIP problem without finite-size scaling leads to unreliable
localization lengths, i.e., it systematically overestimates
the TIP localization length λ2 in finite-sized samples in
the case of vanishing interaction (U = 0). In addition,
simple extrapolations to infinite sample size [12,23] may
lead to an underestimation of λ2 [31]. An alternative ap-
proach, which does not suffer from the above problem, is
based on the decimation method and has also been ap-
plied recently to TIP in a 1D random potential [20]. This
encouraged us to reexamine the localization lengths for
TIP in 1D quasiperiodic potentials with Hubbard inter-
action with the decimation method. As we shall show in
the following, we find that the general conclusions of refer-
ence [14] remain valid, i.e., the MIT is not affected by the
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interaction. The critical properties of the single-particle
transition at µc = 1 are not altered within the accuracy
of our calculation. One-parameter scaling is obeyed for
onsite interaction strengths up to U = 10.

As an independent extension of these low-density re-
sults, Chaves and Satija [32] have studied a model of
nearest-neighbor interacting spinless fermions [33] at fi-
nite particle density in the same quasiperiodic potential
by means of Lanczos diagonalization for small systems
up to chain size M = 13. They have found evidence for
a critical region. In order to reach much larger system
sizes for interacting systems, one can employ the numer-
ical density-matrix renormalization group (DMRG) [34].
With the DMRG the ground state properties in 1D can be
obtained very accurately [35,36]. In a recent paper [37], we
studied the quasiperiodic model of reference [32] at vari-
ous densities and interaction strengths V by DMRG. We
compare the results with the present TIP data at the end
of the paper.

The paper is organized as follows. In Section 2 we de-
scribe the Hamiltonian of our TIP system and explain how
to obtain the TIP localization lengths via the decimation
method. In Section 3, we comment on the particular finite-
size-scaling method employed and present the estimated
critical parameters. We summarize and conclude in Sec-
tion 4.

2 The TIP system and the numerical
approach

The Hamiltonian for TIP in the 1D quasiperiodic potential
of the Aubry-André model is given as

H =
∑
n,m

|n,m〉〈n+ 1,m|+ |n,m〉〈n,m+ 1|+ h.c.

+|n,m〉 [µn + µm + U(n,m)] 〈n,m|. (1)

Here µm ≡ 2µ cos(αm + β) is the quasiperiodic potential
of strength µ with α/2π being an irrational number. β is
an arbitrary phase shift and we choose α/2π = (

√
5−1)/2,

i.e., the inverse of the golden mean. This value of α/2π
may be approximated by the ratio of successive Fibonacci
numbers — Fn = Fn−2 + Fn−1 = 0, 1, 2, 3, 5, 8, 13,
. . . — as is customary in the context of quasiperiodic sys-
tems [38]. The Hubbard onsite interaction matrix U(n,m)
is diagonal, i.e., U(n,m) = Uδnm. The indices n and m
correspond to the positions of each particle on a chain of
length M . Now we use the decimation method [20,39] to
construct an effective Hamiltonian for the diagonal of the
M ×M lattice along which the cigar-shaped TIP wave
function has its largest extent [25,31]. The quantity of in-
terest is the TIP localization length λ2 defined by the TIP
Green function G2(E) [26]:

1
λ2

= − 1
|M − 1| ln |〈1, 1|G2|M,M〉|. (2)

For TIP in 1D and 2D random potentials, this approach
has led to high precision results supporting the proposed

increase of the TIP localization lengths due to the re-
pulsive interaction [20,21]. We remark that similar data
have also been obtained for nearest-neighbor [26] and long-
ranged interactions [24].

The correlation length ξ∞ for the infinite system may
be obtained from the localization lengths λ(M) for fi-
nite system sizes by the using one-parameter scaling hy-
pothesis ΛM = f(M/ξ∞) [40] for the reduced localization
lengths ΛM = λ(M)/M . The MIT is characterized by a di-
vergent correlation length ξ∞(µ) ∝ |µ−µc|−ν [1]. In order
to reliably extract the critical parameters from the calcu-
lated values of λ2(M) one may apply a finite-size-scaling
procedure [22] that numerically minimizes deviations of
the data from the common scaling curve f . The critical
exponent ν can then be extracted by fitting the ξ∞ ob-
tained from finite-size scaling [41,42]. This method was
used previously [14] for finding the critical parameters of
the present model.

Higher accuracy can be achieved by a method applied
recently [41–44] to the MIT in the Anderson model of
localization. We construct a family of fit functions which
include corrections to scaling such as (i) nonlinearities of
the dependence of the scaling variable on the quasiperiodic
potential strength and (ii) an irrelevant scaling variable
which accounts for a shift of the crossing point of the
ΛM(µ) curves as a function of µ, i.e.,

ΛM = f̃(χrM
1/ν , χiM

y), (3)

where χr and χi are the relevant and irrelevant scaling
variables, respectively. f̃ is then Taylor expanded up to
order ni in terms of the second argument

ΛM =
ni∑
n=0

χni M
nyf̃n(χrM

1/ν), (4)

and each f̃n is Taylor expanded up to order nr:

f̃n =
nr∑
i=0

aniχ
i
rM

i/ν . (5)

Nonlinearities are taken into account by expanding χr and
χi in terms of u = (µc − µ)/µc up to order mr and mi,
respectively,

χr(u) =
mr∑
n=1

bnu
n, χi(u) =

mi∑
n=0

cnu
n, (6)

with b1 = c0 = 1. The fit function is being adjusted to the
data by choosing the orders ni, nr,mr,mi up to which the
expansions are carried out. Of course, the orders have to
be taken not too large to keep the number of fit parameters
ani, bn, and cn reasonably small.

3 Numerical results for TIP

We calculate λ2 at energy E = 0 for 20 values of the
Hubbard interaction, i.e., U = 0 (the non-interacting
single-particle case), 0.1, . . . , 0.9, 1, 2, . . . , 10 for 6 sys-
tem sizes M = 13, 21, 34, 55, 89, 144. For U = 0 and 1,
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Fig. 1. Reduced localization lengths ΛM versus quasiperiodic
disorder strength µ for U = 0. For clarity, only error bars for
M = 55 and 377 are given. The lines are the fits to the data
given by equation (3).

we also have data for M = 233 and 377. The quasiperi-
odic potential strengths µ is chosen close to the single-
particle transition at µc ≈ 1 and ranges typically from
0.95 to 1.05. As in reference [14] we average the results
over different randomly chosen phase shifts β in order to
reduce the fluctuations. The number of β values used in
this averaging ranges from 5000 for M = 13 to 1000 for
M = 377. In order to perform the non-linear fit neces-
sary for the finite-size-scaling procedure as outlined in Sec-
tion 2, we use the Levenberg-Marquardt method [44,45].
As the decimation-method data — like the transfer-
matrix-method results [14] — are still rather noisy we have
to suitably limit the ranges of the quasiperiodic potential
strength µ and/or the system sizes M used for fitting the
data.

For U = 0 and 1, which were examined by the transfer-
matrix method in detail [14], the best fit is obtained for
nr = 3, ni = 2, mr = 2 and mi = 1. For U = 0 we
use the data for µ ranging from 0.96 to 1.01 and M =
55, 89, 144, 233, and 377; for U = 1 we use all system sizes
M = 13, . . . , 377 and 0.97 ≤ µ ≤ 1.05. Figures 1 and 2
show the resulting TIP localization lengths for U = 0 and
1. Also shown are the fits of the finite-size-scaling curves
to the data as given by equation (3) for U = 0 and 1,
respectively. We find that for both U values, there is an
apparent transition close to µc = 1. For the case U = 0,
we also observe a systematic shift of the crossing point
with increasing system sizes necessitating the inclusion of
an irrelevant scaling variable as discussed in Section 2.
The transition point is not so clearly distinguished for
U = 1, albeit the different behavior for µ ≤ 1 and µ ≥ 1,
namely the increase and decrease, respectively, of ΛM with
increasing M , is clearly seen.

The corresponding plots of the scaling curves are
displayed in the Figures 3 and 4. The scaling curves
are much better than reported previously [14] for the
transfer-matrix-method data. The critical parameters can
consequently be estimated to be µc = 0.989 ± 0.001,

Fig. 2. Reduced localization lengths ΛM versus quasiperiodic
disorder strength µ for U = 1. For clarity, only error bars for
M = 377 are given. The lines are the fits to the data given by
equation (3).

Fig. 3. Scaling function (solid line) and scaled data points for
U = 0. For clarity only every 3rd data point is represented by
a symbol.

Fig. 4. Scaling function (solid line) and scaled data points for
U = 1. For clarity only every 3rd data point is represented by
a symbol.
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Table 1. Values of the critical quasiperiodic disorder strength µc and the critical exponent ν obtained by the non-linear fit for
various U values. The first row for each U gives values and the orders ni, mi, used in the expansion (4–6), for which the best
fits have been obtained. In all cases we find nr = 3 and mr = 2. For µ and M the range of the values which were used in the fit
is given. The second row contains values of the critical parameters obtained from a weighted average of fits for various choices
of ni and mi.

U µ M ni mi µc ν

0 0.96 − 1.01 55− 377 2 1 0.989±0.001 1.00±0.15

0.95 − 1.05 13− 377 0− 2 0− 1 0.99 ±0.02 1.3 ±0.5

1 0.97 − 1.05 13− 377 2 1 0.997±0.001 1.19±0.16

0.95 − 1.05 13− 377 0− 2 0− 1 0.99 ±0.01 1.3 ±0.4

2 0.97 − 1.05 55− 144 0 0 1.001±0.002 1.14±0.11

0.95 − 1.05 13− 144 0− 2 0− 1 0.99 ±0.02 1.5 ±1

3 0.95 − 1.05 13− 144 2 1 1.000±0.002 1.16±0.08

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.02 1.8 ±1

4 0.97 − 1.05 55− 144 0 0 1.000±0.003 1.12±0.10

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.01 1.5 ±0.8

5 0.95 − 1.05 13− 144 1 1 1.002±0.002 1.20±0.09

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.01 1.2 ±0.3

6 0.95 − 1.05 55− 144 0 0 0.999±0.002 1.28±0.08

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.02 1.3 ±0.1

7 0.95 − 1.05 55− 144 0 0 0.997±0.002 1.28±0.07

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.01 1.5 ±0.6

8 0.97 − 1.05 55− 144 0 0 1.001±0.002 1.16±0.08

0.95 − 1.05 13− 144 0− 2 0− 1 0.99 ±0.02 1.4 ±0.4

9 0.97 − 1.05 13− 144 1 1 1.000±0.001 1.15±0.05

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.01 1.4 ±0.5

10 0.97 − 1.05 55− 144 0 0 1.000±0.002 1.23±0.08

0.95 − 1.05 13− 144 0− 2 0− 1 1.00 ±0.01 1.4 ±0.4

ν = 1.00 ± 0.15 for U = 0 and µc = 0.997 ± 0.001,
ν = 1.19±0.16 for U = 1. The irrelevant scaling exponents
are close to y = 1.8±0.2 and y = 0.15±0.1 for U = 0 and
1, respectively. Note that the quoted errors correspond
to the standard deviations estimated from the non-linear
fit procedure. In this way the accuracy is significantly
overestimated. Since it is a priori not clear, which val-
ues ni, nr,mr,mi to use, we estimate the true errors from
a comparison of various fits with different ni, nr,mr,mi.
Even in the case of extremely high precision data close
to the MIT in the Anderson model of localization, this
has been shown [44] to increase the error by one order
of magnitude. Therefore we conclude that the interaction
strength U for TIP does not influence the MIT in the
quasiperiodic potential within the accuracy of the present
calculation.

Further results for larger U values are collected in Ta-
ble 1. The expansion orders ni, nr,mr,mi, the system sizes
and ranges of the quasiperiodic potential strength have
been chosen in order to minimize the χ2 statistics and to
get the most convincing scaling fit. Furthermore, one has
to check that various initial parameters (an, bn, cn) con-
verge to the same values of the critical quasiperiodic po-
tential strength µc and the critical exponent ν. Figures 5
and 6 show the values obtained in this way. For almost

0 2 4 6 8 10
U

0.98

0.99

1.00

µ c

Fig. 5. The critical quasiperiodic potential strength µc versus
Hubbard interaction strength U . Error bars mark the errors
resulting from the Levenberg-Marquardt method of the non-
linear fit.

all cases the critical quasiperiodic potential strength µc

remains close to 1, the only exceptions are U = 0 and
0.1, when µc = 0.99 and 0.98, respectively. However, since
we know that the transition in the single-particle case is
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Fig. 6. The critical exponent ν versus Hubbard interaction
strength U . Error bars mark the errors resulting from the
Levenberg-Marquardt method of the non-linear fit.

exactly at µc = 1 [28], this observation can be used to
estimate the true error of the estimate for µc. Thus com-
paring with the µc estimates for U 6= 0, we find that the
errors calculated within the non-linear fitting procedure
are significantly underestimated as discussed above. We
therefore conclude that within the accuracy of our cal-
culation there is no change of the critical quasiperiodic
potential strength µc for the Hubbard interaction in the
range 0 ≤ U ≤ 10. The same argument leads to the con-
clusion that within the error bars the critical exponent ν
does not change with the Hubbard interaction strength
and is close to 1. This is an agreement with the previous
results obtained by the transfer-matrix method and finite-
size scaling [14]. We stress that the critical exponents can
only be obtained with much less accuracy than the tran-
sition point µc as shown in Table 1.

4 Conclusions

In this work, we have studied the interplay of disorder
and interactions for a quantum system at very low den-
sity (TIP). We calculated the pair localization lengths
for a quasiperiodic potential and Hubbard interaction by
means of the decimation method and extracted the criti-
cal parameters from the fit using the one-parameter scal-
ing hypothesis. For both non-interacting particles as well
as onsite interaction we obtain the value of the critical
quasiperiodic potential strength µc = 1 and the critical
exponent ν ≈ 1 in agreement with the previous results of
transfer-matrix-method calculations and finite-size scal-
ing [14]. The results for U > 1 show that this conclusion
remains valid also for much stronger interactions.

Let us briefly compare these results to the finite den-
sity situation. For N interacting spinless fermions on a 1D
ring of circumference M with Aubry-André onsite poten-
tial µ and nearest-neighbour interaction V it is possible
to treat system lengths up to about M ≈ 100−200 using
the DMRG. We applied [37] the finite lattice algorithm for
non-reflectionsymmetric models as described in [46]. For

a system of free fermions at finite density like ρ = 1/2
(incommensurate compared to the wave vector of the
quasiperiodic potential — an irrational multiple of π), we
reproduced [37] the expected transition at µc = 1 in agree-
ment with references [14,32]. For attractive and repulsive
interactions at ρ = 1/2 the numerical results are available
for only two system sizes (M = 34 and 144), therefore con-
clusions about these regimes appear rather speculative. At
commensurate densities ρi ≈ limn→∞ Fn−i/Fn ≈ 0.618,
0.382, 0.236, and 0.146 — corresponding to i = 1, . . . , 4
— and in the repulsive regime (nearest-neighbour interac-
tion V > 0), the ground state is localized for µ > 0 [37] in
agreement with previous studies for disordered and peri-
odically disturbed systems [15,36]. The above increase of
the localization lengths as predicted by the arguments for
TIP [10] is most likely too small [16] to be detected by the
present accuracy. For attractive interactions V , all densi-
ties ρi and µ→ 0, the system shows a Peierls-like transi-
tion from insulating to metallic phase at V ≈ −1.4 [37] in
agreement with the weak-coupling renormalization group
treatment [47] of spinless fermions on a Fibonacci lattice.

In conclusion, we have studied the influence of inter-
actions on an MIT in a quasiperiodic model in 1D. Our
results suggest that the delocalization found for low den-
sity TIP in the localized phase cannot simply be extrap-
olated to the finite-density situation. At finite densities,
other effects such as a Peierls-like commensurability be-
come important and dominate the transport properties.

We thank M. Leadbeater for help with the decimation method
and C. Schuster for stimulating discussions. We gratefully ac-
knowledge the support of the SMWK and the Deutsche For-
schungsgemeinschaft within Sonderforschungsbereich 393.
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21. R.A. Römer, M. Leadbeater, M. Schreiber, Ann. Phys.
(Leipzig) 8, 675 (1999).

22. A. MacKinnon, B. Kramer, Z. Phys. B 53, 1 (1983).
23. K. Frahm, A. Müller-Groeling, J.L. Pichard, D.

Weinmann, Europhys. Lett. 31, 169 (1995).
24. D. Brinkmann, J.E. Golub, S.W. Koch, P. Thomas, K.

Maschke, I. Varga, Eur. Phys. J. B 10, 145 (1999).
25. D. Weinmann, A. Müller-Groeling, J.-L. Pichard, K.

Frahm, Phys. Rev. Lett. 75, 1598 (1995).
26. F.v. Oppen, T. Wettig, J. Müller, Phys. Rev. Lett. 76, 491

(1996).

27. P.H. Song, D. Kim, Phys. Rev. B 56, 12217 (1997).
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37. C. Schuster, R.A. Römer, M. Schreiber, Phys. Rev. B

cond-mat/0102251 (submitted).
38. U. Grimm, Habilitationsschrift, Technische Universität

Chemnitz, 1999.
39. C.J. Lambert, D. Weaire, Phys. Stat. Sol. (b) 101, 591

(1980).
40. D.J. Thouless, Phys. Rep. 13, 93 (1974).
41. P. Cain, M.L. Ndawana, R.A. Römer, M. Schreiber,
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